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A method of averaging is used to study two gencral
problems for the drag free motion of an artificial
Earth satellite. First, the four body oblate Earth
problem, which describes the satellite motion per-
turbed by the point mass effects of the Moon and Sun
as well as the oblate Earth is analyzed. In this
problem the first-order harmonic J2 end the second-
order harmonics J3 and J4 arc¢ included. Several trans-
formations are introduced and the transformed dynami-
cal system is analytically integrated. Secondly, two
specific classes of orbits for the four body oblate
Earth problem with resonances duc to the sectoral and
tesseral potential of the Earth are examined. The
transformed dynamical system for this preblem is also
analytically integrated except for a numerical cvalua-
vicn of the main r sonance effect. Both prohlems con-
sider satellites with orhital periods up to 24 hLours.
The resultant model! is a mostly analytic, computation-
ally eofficient ephemeris generator which includes the
most significant perturbations for satellites with

orbital periods up to onc day.
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1. INTRODUCTION.

Four-body oblate Earth treatments include singly
averaged numerical soluticns by Kozai [14], Kaula [11] ,
and Cefola [3], singly averaged analytic solutions by
Estes [4] and Koskella and Arsenault [13], and doubly
averaged numerical solutions by Ash [1] and Lidov [16].
Doubly averaged analytic solutions have not been widely
used despite the apparent potential for computational

efficiency.

There are very few references which treat the com-
bined problem of resonating satellites in the four body
oblate Earth problem. The work of Bowman [2] develops
a singly averaged numerical model for 12-h elliptic
resonating satellites in the four body oblate Earth
problem with drag. A series of publications by Xamel
and Tibbits [8)]), Kamel, Eckman, and Tibbits [9], and
Kamel [10] studies a singly averaged, numerically in-
tegrated model for 24-h resonating satellites in the
four body oblate Earth system by augmenting the solu-
tion of Kozai [14]. It is important to note here that
a compietely analytic solution was obtained by Roman-
owicz [20,21] for arbitrary resonating satellites in
the oblate Earth problem. The Rowanowicz development,

however, does not address third body effects.
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Large scale space applications and simulations re-
quire efficient and compact ephemeris generators which
model the major perturbative effects for artificial
Earth satellites, This study is a development of such
a generator for two related problems for these satellites.
The first development applies multiple transformations
to the four body cblate Earth problem to obtain an an-
alytic solution. The first-order short periodic varia-
tions due to J2 and the second-order long periodic
variations (28 day and 365 day) due to lunar and solar
effects are recovered using the transformations intro-
duced by a method of averaging [19]. The second
development addresses the problem of resonating satel-
lites in the four body oblate Earth problem. These
satellites are assumed to have 12-h or 24-h orbital
periods. The method of averaging is again used to de-
rive a multiply transformed dynamical system. The
transformed dynaical system is then integrated analy-
tically except for a numerical evaluation of the main
resonance effect. The resultant ephemeris generators
are computationally efficient. The second model re-
duces te the first cne under non-resonant conditions.
For brevity, this discussion is presented in terms of
the gravitational functions, and the explicit expres-

sicns of the final solution are to be found in the




Appendices. This is a first analysis of the resonant
four body oblate Earth problem where multiple trans-

formations are develcped.

The result is a model which addresses the same prob-
lems as the referenced papers, but does not readily

reduce to any particular work.

2. THE FOUR BODY POTENTIAL

The four body oblate Earth problem is a function of
the perturbative effects due to the potentials of the
Earth, the Moon, and the Sun.

The spherical harmonic potential of the Earth is given

by Kaula [12] as

vV = Z Z TT lm(sm £) (C cos my

m=0

+ ng sin my)

where Pgmis the associated Legendre functiont. The zonal
potential (R_) can be separated from the potential due to

sectoral and tesseral harmonics (RV) by

V = Rz + RV

+ The mathematical symbols are defined in the table of

notations.
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where .
y a, 2 _ a, 3
a /
- J, (—f‘i) Pro (sin &) + ...)

and RV is expressed in terms of classical elements by

L
) ua @
= ) _._..._e.__. i
R, ? l‘ 2: o1 E'ﬁ‘ Famp () D Gpoq (6) Sproo (0,M,2,0)

qx:-u:

where &,m,p,q are integers (2)

C £-m even
cos [(£-2p)w + (2-2pvq)M
im] 2-m odd

(w,M,0,0)

]
o
=

Sempq

+
=)
—~—
=2
1
Lo 2]
—t
e

+*
o
=]

sin [(2-2p)w + (2-2p+q)M

g ] £-m even i
£-m odd

C
lmJ

+m (Q-8)]

and Flmp (i) and GE q {e) are functions of inclination and

P
eccentricity, respectively (see Kaula [12]).
E The gravitational potential of the Moon or Sun is repre-

sented by the 2xpanded third-body potential:
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1
R, = Gmx[ = & 53 P20 (cos ¢) + fI Pio (cos ¢) + ... ] (3)
X

X
X

where

COS5 ¢ = COS U COS Ux cos (Qer)
- sin u cos Ux cos 1 sin (Qer)

. : ] 4
* cos u sin U cos 1 sin (2-H)) (4)

+ sin u sin U_ cos i cos s (§-
x €° oS lx cos ( Hx)

+ sin u sin U_ sin 1 sin 1
X X
which can be notationally simplified as (see Appendix H):

cos ¢ = Acos f + B sin

A= Xl cos Px + Xz sin Fx (s)

B = XS cos Fx + X, sin Fx
It 1s assumed here that zonal variations due to J2 are
first-order effects, while all other perturbations are
second-order effects., The 24-h limit assumed for satel-
3 lite orbital period permits a truncation of the lunar

and solar potentials:




o 1 o
Rx = Gmx [ ot ;3 P20 (cos ¢)] (6)
X
while the zonal potential Rz is truncated after J4. The
potential for the four-body oblate Earth problem is then

represented by:

R = Rz + Rv * RL + RS

The associated perturbed dynamical system is defined by
partial differentiation of R and substitution in the Lagrange

planetary equations (see Appen..x B).

3. THE EQUATIONS OF MOTION.

The complete dynamical system includes the orbital
motions of the Moon and Sun as weli as the rotational rate
of the Earth. In this study, only the mean anomalies of the
Moon (YL) and Sun (YS) and Greenwich siderecal time variable
(8) arc assumed to have significant rates and it is assumed

that lv=Hx-Gx=Ex=Ax=0. Thus the dynamical system takes the form:

v (i) v (B)g ¢ (3),

—
[
ot
H
p—
o
St

Qz + GL + Qs + 0

2
[
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z L s v (7)
;L'NL
;s B Ns
é = constant
where the initial conditons are defined by a . €., ~eafge

4, THE FOQUR BODY OBLATE EARTH PROBLEM,

a. The First Transformation. For non:resonant problems,
the dynamical system (7) is a function of two fast variables,
M and 9, wh.ch satisfy the conditions for application of the

method of averaging. Through Leibnitz's Rule, the potential

R may be averaged directly:

Define:
2n
< g > = L g dx
L 2n
0
Then
< B >M.6 = ¢ RZ > M + ¢ RL > + < RS > M + < RV > M, 8
where

< RV > M, 8 =0

and from Liu [17]):

3
J,n~ 2

2 3 . .
< R: >y " :;;f (1 - ¥ sin“1} (8)
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3J4n

iy (1 + %ez) (8 - 40 sini + 35 sin%i)
a‘g

2
3J3n

i sin i (5§ sinzi - 4) sinw
Bag

2
15J4n

.2, 2. 8
T ezsxnzl (6 - 7 sxnzx) cos 2w (8)
€4a“R

2 2 ”
. 3J,n (40 cos*i - 8 cos?i - e” (5 -

18 coszi
[
128a“B

+ 5 cos’i) + 48 (1 - 3 cos?i)?

+ 2e2 (1 - 16 coszi + 15 cosdi] cos 2w],
and
2
G 2 2 2 2 2.
< RX )M = (3A° + 3B~ - 2 + ¢ (12A° - 3B° - 3))

ir’
First-order short periodic variations due to J, are given
by Liu (Ref 17) and repecated in Appendix F, while the

second-order short periodic variations are neglected.

b. The Second and Third Transformation. The averaged

dvnamical syvstem, which is 4 function of the singly averaged

potential <R>M gr 18 dependent upon the fast angular
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variable Yy - The method of averaging is again applied

by transforming the potential to remove the mean anomaly

of the Moon:

<< R »

Ms9>YL = < Rz >M + << RL >M>Y + < Rs >M

[ (9)

The doubly averaged dynamical system, due to Eq. (9)

is now a function of three angle variables @, Yoo and

w, all of which are neariy the same order. The method of
averaging can be used to derive a transformed dynamical
system which is independent of Q, Yoo anda w. This

process would, however, give rise to several singularities
in the associated transformations. Each singuiarity would
require 2 special solution in some small neighborhood of
the singularity. Such a piecewise treatment results in
nultiple sets of solutions and is not compact. Conse-
quently, this development uses the method of averaging

to derive a transformed dynamical system which is indepen-
dent of Y, alone. The method of averaging is applied tc

the potential ‘R>M G>Y to remove the periodic dependency
: L
upon y_:

<<< R »

M.9>YL>YS = < Rz >M + << RL >M>YL + << RS >M>Yq




where

Gmxa2 5
<< R > = (Z + 2. - (4 + 6e”))

and

2

. 2
Z; = 3 (X] * X3

2 2 2
- e (4X1 - XS))

2 2, .2 4y _ y2
2= 3 (X5 % Xy *+e” (4X; - Xy))

The long periodic variations in Yy, and Y, are define’

by the method of averaging++ and denoted by:

Gmxa2
SR = (Z,F, + Z.F, + Z.F. + F )
x 3 _ Ry 011 272 373 7 74 11

4AN (1 - E)) (11)
where
Yo = Y, N (t-t)

0

Fx = Yy + 2 Ex sin Y,

1 . X 1 1 . 2
F1 = 3 sin Fx cos Px M (Fx - Yx) *x E1 sin Fx cos Fx

++ See Ancillary Topics for further discussion.
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Jd
=
7]
1
A=
2!
[g]
o
0
T
1
)=

I L . Le gind
F3 = 5 sin Fx cos Fx * 5 lFx yx) 5 Ex sin Fx
F, = -(2 + 3e2) E. cos F
4 X X

2
I, = 6 (XX, + XoX, + &7 (4X X, - X3X4))

¢. Four-Body Integration. The triply transformed

four-body oblate Earth dynamical system for non-resonating

satellites has the form (with the < > notation implied):

a = 0

; = ;z * ;L * ;s

() = (ii,_ * (iiL * ('155 (12)
6 = ;z + QL + 65

11
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z L 3
;L * N
T, - N,
é = constant

whore the secular rates are presented explicitly in
Appendix D for zonal expressions and appendix E for
third body effects.

This system is a function of variables which vary
slowly with time. It is assumed that the variable
rates in system (12) can be treated as epoch quantities
for integration purposes, and that the resultant integra-
tion may be valid for an extended period of time. For

example:

ieig e (1), + (D)) + (1)), (t-t)

Gy * (i + 4y Qs)o (t-t )

=
L]

12



=
"

Moo+ (no+ M+ M+ M) (t-t)

5. RESONANCE PROBLEMS.

A resonance condition exists between M and 06 when

there exist integers %, m, p, and q such that

(2-2p)w + (2-2p*q)M + m(Q - 8) < ¢ (13)
where ¢ < J2/4.

Equation (13} naturally motivates the definition of two
new variables Al and Az, where:

L] .

1 M+ 2(0 - 8) when M

e
]
n
~
s ]

A, = w + M+ Q -8 when M

it
o]

a. The First Transformation. The dynamical system

(7) is a function of two fast variables M, and 6, but does
not satisfy the conditions for a method of averaging

uinder the resonance conditions M = 2 8 or M = 8. A

change «of variable is suggested:

M=y - 20 + 20 or M = Ay -2 -w+ (14)

13




which results in a new dynamical system:

a =az+aL+aS+av
= a +
e c..z eL+Ps+ev
(1) = (1), + (i) + (i)  *+ (i),
Q =QZ+QL+QS+QV
(1s)
w =wz+mL+ws+wv

8 = constant
The dynamical system (15) is now a function of one fast
variable, 68, and is in a form which satisfies the condi-

tions of the method c¢f averaging. Again the potential is

14




averaged directly;

¢
< R\A,e) >e

[}
A

R,(1,0) >+ < R(3,8) > + < R.(1,8) >,

+
A

RV(A,B) >a

= < R > + <R, > + < Rs >

x
2 M LM v RV(A) >8

M

< L3
+
RV (x,8) >a

* An
where Rv is independent of 8 and Rv is dependent upon 6

as a result of the change of variable, Eq. (14). If

lepq 1s defined by:
3 2+]1 . 2 2
lepq (uae/a ) Flmp(l) Gqu(e) 'J (sz ¥ sEm)
then
x
Po(x) = Z: Q cos ((R-2p)w + (2-2p*+q)d, - X, )
v 1 2om.p,q 2mpq 1 im
or
(16)
] * z :
1 RV (12) - szpq COSs ('qm + (2'2p+q)lz - Azm)
, 2"mDqu

15
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where

) arctan (Szm/sz) (t-m) even
)‘Em

arctan (sz/'szm) (t-m) odd

®
In either case, RV(A) is summed over all possible sets of
subscripts (%,m,p,q) such that Eq. (13) is satisfied.

Therefore

E 3] X ‘
RV (A)e) = Rv(lye) - RV (A) and

R** 5 % *
<R, (x,8) > =0and <R (A) >, =R, (})

and

"
< R(»,8) > T R >yt <Ry oyt <Ry Ry (). (17)

L
1s the singly averaged four-body obtlate Earth potential
under resonance conditions. First-order periodic varia-
tions in mean anomaly are recovered as before while other

short periodic effects are neglected.

b. The Second and Third Transformations. Again, the

singly averaged dynamical system is in a form which per-
mits averaging over YL and Y2 successively, The resultant

resonating triply averaged potential is given by:

<<< R(x,8) >9>YL> Yo = < Rz > * << RL >M>YL



L
wy * R, ()

+ << R_ >
S YS

and the associated dynamical system has the form:

A
a = a
v
e se e te,
(1) = (1), *+ (i) + (i),

(18)

E 6 = constant

% . “n * & .
?hcre e, (1)v. Qv’ Wy » and Mv are neglected. The variable

® ]
a, may be obtained by partial differentiation of R, () and

-

substitution into the Lagrange planetary equation for a.




It 1s convenient at this time to change variables and re-

place a by

* . s
n, = (-.n/Za)av

c. Four-Body Integration. The dynamical system (18)

is again a function of variables which vary slowly with
time, except n and X, which may oscillate rapidly. Ex-
cept for n and A, the orbital element rates in the sys-

tem (18) may be treated as epoch quantities for integration
pmiposes. Further, most of the variable expression in n
and ) are assumed to be epoch constants, except for n, w,

and % as follows:

x 2 EE: ] .
n, = ( 3nja /u) (£-2p*a) (Qppnqlo Sin (cw
R’lmlpiq

+ (L-2p*q) X - A, )
A
¢ (19)
; i n + (Mz + ML + Ms + "(Qz + QL + Qs)-ZB)0
Do+ (M, * M YMo R+ R e, te o - 8)

where ¢ =-q or (L-2p) (sce Eq. (18)) and w = wy W (t-to)
for efficiency, a numerical integration of Eq. (19) is
chosen, resulting in a mostly analytic integration cf

the system (18). It should be noted that the argument

18




of perigee must be allowed to vary with time during the
integration of Eq. (19), particularly for the highly

eccentric 12-h satellites.

6. ANCILLARY TOPICS.

a. Periodic Expressions. The periodic variations due

to Yy and Y, are recovered in the discussions of second
and third transformation. These periodic variations are
functions of the integrated transformed variables and are
quite complex. To be consistent with the assumptions

made in the integration sections, all variables except F

L
and FS are cvaluated under epoch conditions. Thus:
Gmxa2
SR = (2. F. .+ 1, F. + 1. F.+ F,) (20)
¥ MiNx (1-13)2()3/20 1, 1 2, ¢ 3,37 e

Both long and short periodic variations arc singularity
frce through a change of variables. An example of <such
a change of variables is to be found in Appendix G.

b. Small Divisors. The clas<sical elcment fermula-

tion of the secular systems (12) and (18) suffers singu-
laritics for zeros in inclination and eccentricity 1in
second order cxpressions from RL‘ Rs’ and Rz (.J.5 only).
These systems can be formulated in terms of equinoctial
clements (sce Ref (3)). The cxpressions with classical

inclination singularities hecome third order non-singular

19
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expressions in a neighborhood of the singular point.

The classical eccentricity singularities occur in the J3
terms. For high altitude satellites where lunar and
solar perturbations are second-order, the perturbations
due to J3 become third-order when eccentricity is small.
In either case the expressions with classical singularities
become third-order near the singular points and can be
neglected irn this second-order development. The same
result is more economically obtained by simply neglecting
the singular classical variable expressions in some

small neighborhood of the singularity.

c¢. The Ephemeris of the Moon and Sun. The classical

orbital elements of the Moon and Sun with respect to the
equatorial plane at the time of epoch of the satellite
elements are obtained using the model presented in the

Explanatory Supplement to the Astronomical Ephemeris and

American Ephemeris and Nautical Almanac [5]. The model

is supplied, witl.out explanation in Appendix 1.

d. Other Simplications. Through order of magnitude

analysis of the lepq coefficients in Eq. (19), a signi-
ficant rcduction in the number of terms in the resonating
poterntial is possible depending upon the desired accuracy.
For the existing 24-h satellites, the most significant

are defined by the set of quadruplets (i,m,p,q) =

Qiqu
{ 2,2,0,0), (3,1,1,0}), and (3.3,0,0)} . For the existing

20
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12-h satellites, the set of significant quadruplets is
much larger due to the ranges of values for inclination
and eccentricity. In general, the more significant 12-h
quadruplets are those where 2 < 6 and m < 6 and Eq. (13)
is satisfied. The results obtained for this paper are
based upon these simplifications. For NORAD applications
the generalized Glpq(e) and Fzmp(i)’ as presented in
Appendix J, proved to be too cumbersome. Explicit ex-
pressions have bheen developed for the most frequently
used eccentricity and inclination functions; these

explicit functions are also presented in Appendix J.

7. RESULTS.

The graphical results presented here arec long-term
comparisons versus epoch orbital elements of existing
satell tes extracted from the NORAD Historical Data
System, (Data anomuazlies due to historical circumstances

are not edited). The values of the NORAD elements are

represented by X's, The solid lines are predictions
with this c¢phemeris gencrator, assuming the "X" denoted

hy “E" ax the cpo:zh value. The SAO 1969 geopotential

model is used.

Figures 1 ¢nd 2 depict the mean motion and ecast

T

E longitude {},) for the 24-h satellite 1971-0958 for the j
5 period September 1972 through April 1978. Resonating

; about both "null poinrts", this atellite almost cir-

s

cumnavigiates the Farth,

21
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Figures 3 and 4 present the mean motion and resonance
angle (Al) for the elliptic 12-h satellite 1964-049E
for the period January 1970 through July 1971. This
satellite represents an extreme case of resonating 12-h
satellites in terms of maximum drift rate in Al (approxi-
mately 1?35/day).

These two test cases provide a successful examination
of this model for resonating satellites in the four-body

oplate Earth system.

8. REMARKS.

Throughout the region of interest it is assumed that
the zonal effects due to JZ are first-order variations
while all other perturbations are second-order variations.
This, of course, may not be valid for cases in which
the lunar and solar effects are either larger or smaller
than second-order.

For near-Earth satellites, where lunar and solar per-
turbations are third-order, the reader is referred to

onc of the many oblate Earth second-oraer theories.
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10. NOTATION.

All variables are referenced to a non-rotating
Earth-centered coordinate system defined by the equatorial
plane and the line of poles. In this system, the Sun
"appears' to revolve about the Earth and is thus given

orbital elements.

Symbol Definition
A Intermediate variable
Ax Semimajor axis of body X
a Semimajor axis of satellite
a, Mean equatorial radius of the Earth
B Intermediate variable
Bx l - E x
1 Com Cosine coefficient of spherical harmonic
3 potential
3 Ex Eccentricity for body X
4 ¢ Eccentricity of satel.ite
; Fi Periodic functions of Fx (see Eq. 11)
| Fx True anomaly of body X
1 F Inclination function
{ Lmp
k f True anomaly of satellite
% G Gravitational constant
4 Gx Argument of perigee of body X
; G Eccentricity function
£pq Y

25




£m

lepq

Definition
Arbitrary function

Longitude of node of bedy X
Inclination of body X

Inclination of satellite

Coefficient of zonal potential term

Subscript, referencing the lunar potential
Subscript, degree of spherical harmonic
Mean anomaly of satellite

Subscript, order of spherical harmonic

Mass of body X
Mean motion of body X

tiean motion of satellite
Subscript, evaluated at epoch

Legendre associated polynomial

Subscript, index of inclination function

Amplitude of term in spherical harmonic
potential disturbing function

Subscript, index for eccentricity function
Disturbing function

Periodic expression from method of averaging

Radial distance to satellite

Radial distance to body X

26




Symbol

Definition

Subscript, referencing the solar
potential

Sine coefficient of spherical harmonic
potential term

Combined spherical harmonic potential
term

Time

FX+GX

f+ru

Subscript, referencing the Earth's
harmonic potential

Intermediate variable

Subscript, read L for lunar; s for solar

Intermediate variable

l - e2

Greenwich sidereal time

Resonance angle(s)

Gravitational constant of Earth's mass
Latitude
Mean anomgz ‘7 of body X

Phase angle between T and Fx

Longitude

Longitude of node of satellite

Argument of perigee of satellite
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APPEND1X A

A REV1EW OF THE METHOD OF AVERAGING

The following discussion is extracted verbatim from Liu
[18] with permission of the author and formally documents
the procedures of the Method of Averaging. For a more com-
plete discussion, readers are referred to Morrison [19] or

Kyner [15].

Consider a system of first-order ordinary differential
cquations written in the component formt
X, = eXy: (x ;3 y )+ gzx (x5 ¥ o)

i 11 m’ ‘n 21 *"m’ ‘n (A-1)

2 .
j 7 L0xp) v ey (g )t eTYgy (xpi vy)

~z
n

where 1 = 1,2,...,M,j = 1,2,.,.,,N, 1 <m< M, and 1 < n <N

with the initial conditions xm(Oj = A, yn(O) = bn. The
X.» are referred to as slow variables because their time
variations are proportional to the small parameter €. The
Y, are referred to as fast variables becausc the dominant
parts of their time variations are prorortional to t. The

functions X,. (x . vy )}, X5y (x5 ¥p)» Ylj (X yn),

& I'f Fi' i =1,2,...L, are functions of the variables L S

m=1,2,...,M, we write Fi(xm). 1§ Fi arc functions of
variables Xn and Ype ™ = 1,2,...,M,n = 1,2,... N, we write
Pi (xm; yn)




and Y,j (xm; yn) are assumed to be continuous functions of

x and y with a period of 27. 1In general, the dynamical
system, Eqs. (A-1), is non-linear in nature and complex in
form and hence the integration of the system is usually
analytically intractable.

As the first step in the solution, a transformation is

introduced
X, = X; *ePp. (X ;7 ) +elP,. (X V)
i i 1i m’ ’‘n 2i g Yn
(A-2)
.7 Z .5 20 (x5
Yj-yj +ﬁQlj (xm! yn) +CQ2j (xm’ Yn)

so that in a sense the differential equations become
simpler to handle in terms of the new variables im and ?n'
Here ii and y, arec regarded as the new unknowns and Pl (fm; ?n),
J
) (X
' Q]J (x

tions of each Yy, a5 new functions to be determined in such

P, (?m; ?n o ?n), sz (fm; ?n) are periodic func-

a way as to cffect a simplification in the transformed dynami-

cal system. 1t is desired that the fast variables ?n (to

the second-order in €¢) be climinated from the transformed
differential equations. Thus, the transformed differential

cguations arc to have the form

w]| .
4

— Z - L
Euli(xm) ve Uzi(xm) ve hli(xm’ Yn* €)

(A-3)

- . = 2 = 3 = =,
Zj(xm) + LV]j{xm) + € sz(xm) + € sz(xm. Yo+ €)

o n e i L i e
.
S
%




S

e

for suitable functions Uli’ UZi' Vlj’ sz. For a second-

order theory, the third-order terms W,. and sz will be

1i
ignored. Thus Eqs. (A-3) become

- - 2
x; = eUp () + €70, ()

i = 2

Y; Z;(xp) + e\'ljﬁm) +E szﬁm) (A-4)

with initial conditions xm(O) =a., yn(O) = bn' These
initial values are obtained by substituting the initial
values a s bn into the transformation (A-2). The explicit

expressions of functions 1l U v P P

Qlj »

thorough discussions of the general theory of the method of

10 Y2ir Vi V250 Prae Pono
and sz will be given here without proof. For the

averaging, see Refs 19 and 15.

To describe the explicit expressions of these functions,
the necessary relations and their definitions will be
introduced. To begin with, the Fourier series expression

for the perturbing function Xl has the form

i

Xy (X, ¥.) = Xo. (x )+ ¥,.. (X ;y)
li m n 1i0 " m 111 m n (A-5)

where

n 2n

N
. 1 = = _
xlio(xm) -(?“,) f f xli (xm. yn) d)l...dyN

0 0




T

i o s ke S TR )

Xyi1 (xps yp) = E { Xlilkc(xm)cos[E,y] + Xlil&s(xm)sinlh,?]}

N
[k,yl =1 k¥, (A-6)
n=]

In Eqs (A-6), the following definitions apply. The
notation k = (ky, ky,..vv, koyeont, ky) is used to denote a
vector, each component kn is an integer; k = 0 is not per-
mitted. The notation E indicates summation over all possible

integer vectors k.

The notations Xlilkc(xm) and xlilks(xm) denote the coeffiicients
of the cos [k,y] and sin [k,y] terms, respectively, in the
summation. These Fourier-series coefficients are to be

determined in the usual way. It can be shown by the method

of averaging that

Uli(gm) = xliO(;m)’ Vlj(iﬁ) - Yle(;m) (A-7)

and

P Gi 7)) =] 620017 x

{xxilgs(fﬁ)c°5[5'§] - xlilkc(im)sinlk,?]}

Qy; G T) = - ] (k,2(x )1 x
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where

M

51 " I Py
r=1

(5)jxs (Kpcosk,y] = Sy (Xp)sin(k,y])

9l. (x ) _
(X5 7,) —d=—2 o 151 Gs ) (A-9)

axr

In Eqs. (A-7) and (A-8), the notations Yljo(x ), Y1j1 (x 2 yn),

leS(x ) and S1 kc(x ) have the similar definitions which
apply for Xy;0(xp)s X4y (Xpi ¥p)o X555 (5p) and Xyq00 (XD,
respectively. Secondly, two new functions are introduced
Ryy (xpiv ¥p) = Xy (xps vp) *
Mo [ o g ) 3Py (Kgi T) |
Z Plr (xmv Yn) = — (x ) .
ax 9X
r=1 | T r
N . X, (xps Yp) aP, L (x5 y,)
| Qs (i ¥p) - " Vis(xp) =
3 3y
s=1 | S [
RZJ (Xpi ¥p) = Yo xps ¥p) ® (A-10)
M M ) 2 (x )
1 v ¥
1 1 P (Xpi ¥ Py, (X5 ¥p) —;:l—:—- .
X_8x
=]l we=l r W

A-5




Mo o, (X 5T0) 2Q 5 (X 37)
- . = 1" ™" m’/n’ o 1" "m’'n
) Plr (xm’ yn) a;' Ulr(xm) - *
1=1 | T Xy J
N[ B, (X5 ) 3Q) ;i (X57,)
- . = 1j "™ m’"n" _ - 13" "m'’n
) Qs g yn) 37 Vls(xm) =
s=1 L YS B)’S ..
The method of averaging shows that
Upi () = Ryjo(xgds Vo5 (xp) = Ryyp(xp) (A-11)
and
- .= .. -1
le (xm) Yn) = ‘I [E:Z(im)] X
(R j1ks (Xplcoslk,yl - Rlily_c(;m)smlk’?]}
Qi (X370 =-] k2x)] ! x
23 m' ‘n E = m (A-12)
{Sp5xs Fpdcos Y] - 85y (X sin(k,¥1)
where
M 3Z.(x.)
. = . B im X: 5y ;
Sy = L Pap (Xpi ¥y) = * Ryyy (Xpi Yy) (A-13)
r=1 T

Again the notations Rlio(xm), Rlil (xm; yn), Rlilgs(xm)’
Rlilkc(xm); RZjO(xm)’ RZjl(xm; yn)’ and JZjEs’ Ssjgaéxm)
have the usual meaning in the Fourier series expressions

for Rli’ RZi’ and SZj' respectiveliy. It should also be noted,
in arriving at these expressions, that the nonresonant condi-

tion, i.e., [E,Z(fﬁ)] ¢ 0, has been assumed.

A-§



Following the determination of the functions U's, V's,
P's, and Q's, Eqs. (A-4) may either be integrated analytically
or integrated numerically with a much longer integration
step time than wmavy be used with Eqs. (A-1). The second-

order solution for Xy and yj can then be obtained from Eqs.

{A-2).




APPENDIX B
LAGRANGE PLANETARY EQUATIONS

The Lagrange Planetary Equations are presented here for

completeness:
4 = Zna2 3R
L M

(i) = - Fsini 30 ' "h e

G- 1 3R
h sin 1 91

_ h 3R iy B

w* 7% de (cos i) @

:i ue 9de¢ U da
é where
i h = nazﬂ

p* = ag’

g = l—ez




APPENDIX C
THE TRUNCATED THIRD BODY POTENTIAL

1. The truncated potential for a third body (x) is given

by
r2
Rx = Gmx ;—3 P2 (cos ¢)
X
where

i

cos ¢ COS U COs Ux cos (Q - Hx)
- sin u cos i cos Ux sin (Q- Hx)
+ CcOs u sin Ux Ccos Ix sin (% - Hx)

+ 5j o5 1 sin U os I_ cos -
sin u ¢ < € x (Q Hx)

+ sin u sin 1 sin U sin I
si x !

ki .

e o e i Sl e 2
B o e RIS TR




A =cos w

- sin w

+ COS w

+ sin w

+ sin o

B = - sin

- CO0S W

- sin w

+ Ccos w

F + COS w

period of the

apparcnt peri

. _ X 2
Rx——T[SA + 3B

2. The averaged potential for a third body is given by:

2

/ 2

-2+ ef12a% - 3% - 3)]

cos Ux cos (& - Hx)

cos 1 cos Ux sin (& - Hx)

sin Ux cos Ix sin (& - Hx)

cos i sin Ux cos Ix cos (2 - Hx)
sin 1 sin Ux sin Ix

w COS Ux cos (& - Hx)

cos 1 cos Ux sin (§t - Hx)

sin Ux cos Ix sin (2 - Hx)

cos 1 sin U cos I cos (§ - H
X X ( x)

in 1 si i
sin sin Ux sin Ix

3. The potential for a third body, averaged first over one

satellite, and further averaged over one

od of the third body is given by:

e e i b el



Cm a2
X

. i 1y, o1, . 2
i RV [ R Tyt e )]
X X

where Zl, Z3 are given in Appendix H,

(note that (I—Exz) terms are dropped in NORAD applications)

c-3
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APPENDIX D
ZONAL SECULAR EFFECTS

The singly transformed dynamical system derived by

Liu [17,18] is given in terms of classical elements.

a =190
z
t; = - 2 nJ 2(R ’ sinzi (ld-lSsinzi) e (l-ez) sin 2w
z 32 2 \p
3 (B sin (4-5sini) (1-e%) cos w
8 3\p
215 (R sin?i (6-7sin%i) e (1-¢%) sin 2w
3T Y4l p
3y =3 a 2R sin i (14-15sin’i) e sin 2w
z 64 772 \p

3
3 R I "
‘'3 nJ3(F) cos i (4-5sin”i) e cos
L5 (R i s (6-7sin%i) e’ sin 2 w
3 My P

)"

%48-10351:\21 + %é sindi + (7 - 2— sinzl - %E sinai)e2

oo

2
y 3 R 2. 3 2
wy * 7 ng(-ﬁ) (4-5sin"1) + i ng (

L

D-1

-
" ..
et sk ki s T il il i




+ 6 (1 -3 sinzi) (4-5sin’i) (1-e2)1/2 .

; % [2(14-15sin%i) sin®i - (28-158sin’i

+ 135<in%i) e?] x
:i 3 R 5 . 2. sinzi-ezcoszi
cos 2 mi'ﬁ 3 nJS b (4-5sin"1) =sin 1
1 . . 2. . 15 R\ ¢
g + 2 sin i (13-15sin“i) e sin w - ¥ an D X
1 3 16-62sin’i + 49sin’i + 7 (24-84sin®i + 63sin'i) e’
l . [ sin®i (6-7sin%i) - % (12-70sin’i
+ 635in4'1) ez] cos 2 w%
1 . 2 4
; I E - pd 5 . 2
i nz ZnJZ(p) cos i ~2-ng (p) cosx)d
% B (l_ez)llz
} D-2
,: i
Y




+

“ 2
- sin“i [g— + % (1_82)1/2] %_ (1 ¥ %Sinzi)

Z ,
+ % (7-15sin%i) cos 2 m‘- 5

o
=
|
N
s
i
~——
L&}
~

4
(ISSinzi - 4) e cot i sin w + i—%n%(%) cos i x

[(4-7sin2i) (1 + %— ez) - (3-?sin2i) e cos 2 w]
;42 = n [1 + 3 Jz(g— )2 (1 - sinzi) (1-e2)1/2]
5 %ngz(%) 43 (1 - 3 sin®; )2 (1-¢%)
(1 - sinzi
- —g— sin4i) c2 + 1%- sinzi (14-155in2i) (1
- %ez) cos 2 w] (l-ez)l"2 ‘

f 4
i .3 ngz(g) (1-e2)"1/2 ;3 [3 - 22 sin?y
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A
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=]
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|
+
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(]
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(=
=
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R

s, v, s

| —

2
(1 + Ssinzi - l%l sin4i) e{]+ %T sinzi X
[70-123sin’i + (56-66sin’i) e’] cos 2

3
27 4 . 4. 3 R - . 2.
+me sm1cos4mi—§nJ3(B) sin 1 (4-5sin®i) x

(o]

1-4e

4
It (1-e$)1/2 gin o - T42§8' nJ.( ) (8 - 4nsin’i

+ 355in%i) e? ¥1-e? 15 (:‘;

sinli (6-7sin%i) (2-5¢%) (1-e5)1/2 cos 2 w

where R is the equatorial radius of the Earth, and p = a(l-ez)

'
|




APPENDIX E
THIRD BODY SECULAR EFFECTS

The following equations represent the secular effects
due to a third body (subscript x). These expressions can
be obtained by partial differentiation of the doubly averaged
third body potential as given in Appendix C. As noted in
the text, the right hand sides are assumed to be constant
functions of the epoch elements of the satellite and the
third body. The equational forms of the Xi and Zj are

given in Appendix H.

a =0
X

e, =15 Ccn £

X x“x n (XIXS + XpXy)

274

-C.n
X X

~—
s -
' ®
~
1l
uj
~—
2
i
—
+
1
-
i
o

<N

(@2 sin i) = 57 (257 * Z33)

if 1 <3 set (8 sin i); = 0




Qx = (@ sin 1)x/s1n i

L] L J L
= + 1 - 3

W, (w Q cos l)x cos i Qx

F B
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APPENDIX F
ZONAL PERIODIC EFFECTS

The first-order short periodic variations due to J2

are given by Liu [17] and presented here for completeness.

2 3
5az = Jz(% )% (%) [(1 - % sinzi) + a‘;’- sinzi cos 2 (u*f)]

e bn(2) (0 3 [t o]

A

2 2
l*%—)cosf+g—cc052f+%——c053f[

+*
[#2]
————

+ % JZ(% ) 2 sinzi [ (l + %1- ez) cos (2uw+f)

+ %— cos (2w-f) + Se cos (2w+2f) + % (7 + %?_ ez)x

2
cos (2w+3f) + % e cos {2u+df) « 93— cos (2w+5f)

*isrecos Zw]

)2 sin 21 x ii

3 R
51, KJZ(F




Sw

LR

[e cos (2utf} + cos 2 (w+f) + % cos (2w+3f)J

3 R \? . e

?JZ(E c051f~M+esinf-2-sin(2w+f)
1 . e .

© 7 sin 2 (w+f) - g sin (2w+3f)]

Jz(
3 R\ 2 3 .2\ 1 2

+7J2(5) (1--2-51111) é—(l-z-e)sinf

14{1 . 2.
-6[3-51111

o

2
) (4 - Ssinzi) (f - M+ e sin f)

| -t

sin 2 + -ll—ze sin 3{]-

LS T2

[

"~
—
o=
e
~
P

2
.+ S ( 1- sinzi)] sin (20+f) + = sin?i sin (20-f)
. % ( 1 - % sinzi) sin 2 (w+f) - é [ {% sin?i
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- % (1 - 18—- sin 1}] sin (2w+3f)
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2 2,1/2
6M, = - %JZ (E) (-e ) 3 (1 - %sinzi) X
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2
[(1-1e2) sin f + sin2f+§—zsin3f]

ez) sin (2w+f)
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- e2 1/2 sinzi sin 2w

where R is the equatorial radius of the Earth and p = a(l-ez).




APPENDIX G
THIRD BODY PERIODIC EFFECTS
The following equations represent the additive Lunar
(second) inverse transformation, as given in Eq, (20) of

the text, where Xi, Z.

, F. and C, are as given in Appendix
1 i L PP

H for Lunar-related variables, To obtain the Solar (third)
inverse transformation, determine the Xi, Zi’ and CS for
the epoch solar position and F, at the time of interest and

substitute below:

-308C; e,

SeL T TR (FyXpXg + Fy (XXg + XX4) * FiX;Xy)

. “Cp

81y = n_8 (FiZ93 * Fplyy * Filys)
'ZCL . :

&M, = "H;— (Flzl + F,I, + F,l.+ 3E sinF (-7 -3 eo))
ZCLB .

Sghy = = (Fylgy * Falgg * Filsg - 9 B sinFp )
CL

Syt aE (afar v Falag v Fsfas)

The long period third body terms for & and w, when

io > ,2 radians, are computed by:

Sw, = &ghp - cos i/ §hy/ sin i




80 = GhL/51n i,
However, as reported in the text, the divisor by sin io
for small inclinations necessitates the following change

to intermediate variables:

Sa

L GhL cos §1 + 61L cos 1 sin @

SR* = GhL sin & + 61, cos i cos &

L

6L*L = 8L, + GghL = 81 I sin i

where

L* =M, +w + 2°cos (i)

a = sin (i) sin Q

B* = sin (i) cos R

and where the variables on the right hand sides are inte-

grated, third transformed variables.

gt R ke B e

In this special case the periodics are applied through

the intermediate variables L*, a, and B*. The integrated

. * " i S L

i

il




singly transformed variables are denoted by the p

subscript:

=]
1}

a + 6o, + 6a
5

B*

1

B* + GB*L + 68*5

L* = L* + §L* + 6L*
L S

Q_ = tan! (u/B*)

p
1p = i + 61L + 61S
MP = Mp + GML + GMS

w_ = L* - Mp - Qp CcOoS (iw)
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o
+
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+
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APPENDIX H
INITIAL VARIABLES COMMON TO APPENDICES E AND G
The following variable calculations are intermediate
and in themselves have no important physical definition.
This collection of terms was chosen to minimize the number

of calculations in obtaining third body effects.

a; = cos Gox cos (90 - Hox) + sin Gox cos on sin (90
- HOV)

az = - sin GOx cos (ﬂo - Hox) + CoSs GOx COS on sin (90
- Hox)

a, = - cos G0 sin (90 - Ho ) + sin Go cos Io cos (Qo

b X b X

- Hox)

ag = sin Gox sin on

ag = sin Go sin (Qo - Ho ) *+ cos G0 cos Io cos (no

X X X X




a, = a., cos 1
o]

a, = a4, cO0s ]
4 9 s 1o

X6 = 36 sin mo

ac = -a, sin i0
ag = -ag sin i0
Xl = a, cos w,
Xz = a5 COS w,
X3 = -a, sin W,
X4 = -ag sin @,
XS = ag sin W

X7 = as cOos mo
g XB = 36 cos wo
, 2
? 21 ¢ 12X1 - 33X
232 = 24)(1)(2 -
] 2
l - -
: Z33 = IZXZ X

+ a, sin i

0

+ a sin 1
10 0

+ a, cos i
o)

8

+ a 0s i
10 pes 0

+ a, sin w
2 0

+ 34 sin Wy

+ 32 cCOS wo

+ 34 cos wo

~a

6)(3)(4




L2 2 2
21 = le + 3X3 + e0 231
2. = 6X.X. + 6X.X, + e 2
2 1%2 3Xy * ey 25,
L2 2 2
2y = 3N, + 3X; ¢ el 2.,

2. = -6X,X, + 6X.X. + e (-24X..
11 1%7 3X5 * €, 17
21, = -6X Xg - 6X,X. + 6X;X + 6X,X

b el (-24X.X. - 24 X.X. - 6X.X
5 2Xq 1%s 1Xg
2., = -6X.X, + 6X,X, + e> (-24X.X
13 23 4Xe * € 2Xg
2. = 6X.X. + 6X.X. + e (24X.X
21 155 3o * €, 1%s
2,, = 6XXg + 6X X, + 6X,X, + 6X.X,
s el (28X.X. + 24X.X. - 6X,X
o 2Xs 156 4%7
2.. = 6X.X, + 6X,X. + e° (24X.X
23 26 4%g * & X6
Redefine 21, 22, and 23 in terms of Zi

= - 2 1 = 2
2. ZZi + {1 eo) 2 1 1,2,

i 31
The constants

CL = 4.7968065E-7 rad/min

- 6X5Xq)

5

- 6X4X5)

- 6X,X,)

- 6X3X7)

- GXBXS)

- 6X4X8)

above:

3




Cs = 2.98647969E-6 rad/min

are derived from

where

m, = mass of perturbing body (Moon or Sun) and

m, = mass of the Earth

Nx = apparent mean motion of Moon (or Sun) about the Earth

For the Sun we choose to approximate

m
X ~

=1
m_+m !
X e

: _ 1
while for the Moon we use m T 53 Me-
The mean motions of the Sun and Moon are given by (see

Appendix I also):

=z
[}

1.19459E-5 rad/min

N

L 1.583521770F-4 rad/min

The variables Fl, FZ’ and F.s are conputed as follows where

subscript x = L or s for Moon or Sun:



vy

)
[}
-

x (£ - t)

!
H

g * ZE.x sin v,

T
n

1/2 sin Fx cos Fx

1/2 sinzFx - 1/4

g3
n

(The F, presented here are a simplification of the F.

presented 1n the text (Eq. 11)).




APPENDIX I
LUNAR AND SOLAR EPHEMERIDES
The positions of the Moon and Sun in terms of

classical equatorial elements are given as follows (see

ref [5]):

Qp = 25971833275 - 070529539222t*
€

cos i = cos € cos i - sin € sin i cos §
LO LE LE LE

sin iL = /1 - cc:sziL
(o} (o}

m* = 270°%4342 + 13°17¢,3965268t%

Tl = 334232955 + 0°1114040803¢t*

sin H sin i = yin i sin
I"o Lo Ls Lc

/ .2
cos H = 1l « s81in
Ly, ",

I-1

e htnt e e o S M e i o p——

i b i Breave 50




sin A& sin iL = gin € sin QL
(o) €

cos A = cos H cos 9 + sin H sin & cos €
Lo Le Lo Le

~1 sin A

= x .

ULO mo QL€ * tan cos A

Yg ® 358947584 + 0%985600267¢*
[»]

T T T

N, = 13006499244/day

il oo s L

N = ®985500267/day

o

where t* is the time in days since J,D. 241 5020.0 (1900 Jan.
0.5), and

b
=
i
s

i - 52145396
£

: e = 23%441

TR

I-2

TRy T T AT
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APPENDIX J
INCLINATION AND ECCENTRICITY FUNCTIONS
The generalized eccentricity and inclination formulae,
Gzpq(e) and Fzmp(l), are given below (see Kaula [12}),
These equations are extracted verbatim from Kaula for

completeness., For terms in which ¢ - 2p + q = 0, compute:

] p'-1 £-1 \
GEP(ZP‘I)(C) = (1_82)2-1172i L 2d + £ - 2p! )
d=c
2d + & -2p' 2d+%-2p'

in which

p' = p for p < 2/2,

p' = 2-p for p > /2.

For the terms where 2 - 2p + q ¥ 0, the development of
Gipq(e) is much more complicated; we merely quote the result

of one solution (Tisserand, 1889, p. 256):

s (- 19} 2.2, 1iql > 2k
Gypqle) = (1) (I +87)°8 kgo tpakepqk®
J-1
T e e o L

-
el e - i&




T, N

-y
A

where

e
BI—
1+ l-e2
and
h 2p' - 2 /
P ] PPm Y (et fQ-2p' +qne\T
Lpgk r=0 h -r T 28

and

h "&R" 1 £-2p'+q')e\ T
szqk o) h-r |T! B

r=0 )
h=%k, q >0, h =k -q', q' < 0;

P=pP,q =gq for p < &/2; p*' = £-p, q' = -q for p > 2/2.

While the inclination function Fzmp(i) is given by

Fimp(x) ) (22-21t)! — sint M2ty
t ti(e-t)}!{e-m-2¢t)!2 ="

m
0 5

)

£ - m- 2t + 5§

cosi §
c

C

——




syt e S R

m - 5

\
< ) (;1)C'k
p-t-c

Here k ic the integer part of (g - m)/2, t is summed from
0 to the lesser of p or k, and ¢ is summed over all values

making the binomial coefficients nonzerc.

As discussed in the text, the G (e) expressions are

Lpq
much too cumbersome and too computationally slow for a fast
general perturbations theory because of the eccentricities
with which we are dealing, while the kap(i) have an exact

formulation. The Flmp(i) are used as follows:
3 . 2
FZZO T (1 + cos (10))

Foz1 ® 3 Gin (ig)?

15 Iy 1 - i - 2 i
Fioy = F Sin (i) (1 - 2 cos (i) - 3 cos” (i)
F = - ..l.é sin (1) (1 + 2 cos (l ) - COSZ (i )N
322 8 0 o] o’

P 1%5 sin? (i) (1 + cos (10))2

. - .3
FSZZ = {315/32 (sin

(i) - 2 sin> (i,) cos (i)

.3, 2. . I
+ Rl i |
5 sin (10) cos” i sin (10) (-2/

J-3

- p— - e - S oo o Al o
S ks tmlh o o et i T Dl Nl b




+

4/3 cos (i) + 2 cos? (1,101}

o4}
]

. . . . 72 I
543 [29.53125 sin (10) (-2-8 cos (10) + 12 cos (10)

3

+ 8 cos” (i) - 10 cos® (1))}

and the Gz q(e) are approximated by polynomials in e,

P
depending upon the range of value of e. The approxi-

mations used by NORAD are as follows:

20-1 = .306 - .44 (e - .64)
(3.616 - 13.247¢ + 16.29¢2) .5<e . <.65
e
Gy = | (-72.099 + 331.819e - 508.738e
+ 266.724¢%) .65<e <.775
(-19.302 + 117.39% - 228.419e°
_ 3
Gy + 156.591e°) 5<8 <.65
(-346.844 + 1582.851e - 2415.925¢°
+ 1246.1132%) .65<e  <.775
(-18.9068 + 109.7927¢ - 214.6334¢°
Gypy = + 146.5816e") S5<e  <.65
(-342.585 + 1554.908¢ - 2366.899¢°
+ 1215.972¢°) .65¢<e  <.775

J-4




410

422

520

533

(-41.122 + 242,694e - 471,094e

2

+ 313,953e°) S<e  <.65

(-1052.797 + 4758,686e - 7193.9926¢°

(-146.407

(-3581.69

(-532.114

(-919.2277

{(-37995.78

+ 3651,957¢3) .65¢e  <.775

+ 841.88e - 1629.014e2
+ 1083, 435¢5) 5<e  <.65
+ 16178.11e - 24462.77e>
+ 12422,52e°) .65<e <.775
+ 3017,977¢ - 5740.032e>
+ 3708.2769% (9<e  <.65
(1464.74 - 4664.75e + 3763.64e)  .65<e <.715
(-5149.66 + 29936.92e - 54087.36e>
+ 31324.56e") .715<e <.775
+ 4988.61e - 9064.77e’
+ 5542.21e°) S<e <.7
+ 161616.52¢ - 229838.2e"
+ 109377.94e3 7<e <.78
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